	誤	正	年月日
p. iv, 「符号についての約束」の節の第3行	「最大主応力」	「最大主応力軸」	
p. vi, 左列第5行	変位勾配	変形勾配	
p. 12, 下から7行	相反歪み楕円	相反歪み楕円体	
p.14, 下から1行目と3行目	$q\sqrt{1+q^2}$	$2q\sqrt{1+q^2}$	041015
p.15, 2行目	$(q + \sqrt{(q^2 + 1)}, 1, 0)^{\mathrm{T}}$	$(-q + \sqrt{(q^2 + 1)}, 1, 0)^{\mathrm{T}}$	170125
p. 15, 2行目	$(q - \sqrt{(q^2 + 1), 1, 0)^{\mathrm{T}}}$	$(-q - \sqrt{(q^2 + 1)}, 1, 0)^{\mathrm{T}}$	170125
p. 16, 上から6行	$1 - 2\varphi, 1, 1$	$1-\phi, 1, 1+\phi$	020723
p. 21, 図1.18のキャプションの第2行	右の露頭写真	左の露頭写真	
同行	左の図	右の図	
p. 23, 「定義」の5行下の数式行およびその次の行	$\mathbf{F} = \frac{\partial \mathbf{x}}{\partial \mathbf{x}} = \frac{\partial (\boldsymbol{\xi} + \mathbf{u})}{\partial \mathbf{x}} = 1 + \frac{\partial \mathbf{u}}{\partial \mathbf{x}} = 1 + \frac{\partial \mathbf{u}}{\partial \mathbf{x}}.$	$\mathbf{F} = \frac{\partial \mathbf{x}}{\partial \mathbf{x}} = \frac{\partial (\boldsymbol{\xi} + \mathbf{u})}{\partial \mathbf{x}} = 1 + \frac{\partial \mathbf{u}}{\partial \mathbf{x}}.$	030917
(注釈:	$U \zeta U \zeta U \zeta U \zeta U \chi$	$U \zeta U \zeta U \zeta U \zeta$	
$\mathbf{F} = \frac{\partial \mathbf{x}}{\partial \mathbf{x}} = \frac{\partial \left(\boldsymbol{\xi} + \mathbf{u}\right)}{\partial \mathbf{u}} = 1 + \frac{\partial \mathbf{u}}{\partial \mathbf{x}} = 1 + \frac{\partial \mathbf{u}}{\partial \mathbf{x}} = 1 + \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \cdot \mathbf{F}$	しにかって、極限をとれは早を統合で置き 換えることができて、	東仮の頃は変位の勾配である、すなわら、	
$\partial \xi \partial \xi \partial \xi \partial x \partial \xi \partial x$			
$= 1 + \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \cdot \left(1 + \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \cdot \mathbf{F} \right) = 1 + \frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \cdot \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \cdot \mathbf{F} \approx 1 + \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$			
)			
p. 24, 第5行	となる. この式を	となる. このように2次の微小項を無視することを, 幾何学的線形化 という. この式を	011005
p. 24, 下から3行目	したときの回転テンソルRは,	したときの正規直交テンソルRは,	020507
p.25の最後の式から次ページの第3行まで		$ds - ds_0 \approx \left(u_1 + \frac{\partial u_1}{\partial x_1} dx_1 + dx_1 - u_1\right) - dx_1$	041206
		$= \frac{\partial u_1}{\partial x_1} dx_1 = E_{11} dx_1 \therefore \frac{ds - ds_0}{ds_0} = E_{11}$	
p. 31, 第2.4.1項のタイトル	回転テンソル	正規直交テンソル	
同項の第1行	回転テンソル	正規直交テンソル	
同,下から2行目	回転テンソル	正規直交テンソル	
p. 32, 3行目	$(\dot{u}x_2, 0, 0)^{\mathrm{T}}$	$(2\dot{u}x_2,0,0)^{\mathrm{T}}$	020812

p. 32, 式(2.36)直後の2行	変位が大きくなればRは90°回転に収斂す	変位が大きくなれば式(1.32)のRは90°回転	010509
	るか, 粒子の回転をあらわすRは回転を続 けるわけである.	に収斂するか, 粒子の回転をあらわす上式のR は回転を続けるわけである.	
p. 33, 中央の式左辺の係数	$2\pi a^2 \omega_3 =$	$\pi a^2 \omega_3 =$	020812
p. 39, 中央やや下の行	変化は, $\Delta S = \sum_{i}^{N} \Delta S$ である.	変化は, $\Delta S = \sum_{i}^{N} \Delta S_{i}$ である.	
p. 48, 表3.1の中央の列	N (内向き) n (外向き)	N(外向き) n(内向き)	010815
p. 54, 式(3.25)最右辺	$\sum_{j} \frac{\partial \sigma_{ij}}{\partial x_{j}} + \rho X_{i}$	$-\sum_{j} \frac{\partial \sigma_{ij}}{\partial x_{j}} + \rho X_{i}$	010618
p.58, 最初の式	q(r) =	g(r) =	041004
p.61, 式(3.52) []内の第3項	$\rho_{\rm m}(t_{\rm c}-h-b-t_{\rm o})$	$\rho_{\rm m}g(t_{\rm c}-h-b-t_{\rm o})$	041004
p.67, 17行目	$\int_{h}^{h} \Delta \rho(z) dz$	$\int_{h}^{h_{c}} \Delta \rho(z) \mathrm{d}z$	050706
p. 74, 🖾 4. 3	$T_{\rm II}/\Delta S, T_{\rm III}/\Delta S$	$T_{\rm II}/(\Delta S)^2$, $T_{\rm III}/(\Delta S)^3$	041005
p. 84	Ė	Ė	041006
p.84, 式(4.39)	$1/\dot{\varepsilon}_{xx}$	\dot{E}_{xx}	041006
p.84, 式(4.40)の1行前	のとき, $(a-z)\dot{\varepsilon}_{xx}$ である. したがって上 昇速度は	のときの上昇量が $(a-z)\dot{E}_{xx}$ である.したが って 下 降速度け	041006
p.85, 式(4.42)第2項	$Gv \frac{\partial T}{\partial z}$	$G_z \frac{\partial T}{\partial z}$	041006
p.86, 下行の行列の第22成分	$\sigma_1 \cos^2 \theta + \sigma_2 \sin^2 \theta$	$\sigma_1 \sin^2 \theta + \sigma_2 \cos^2 \theta$	111128

p. 87, 図4.10b	o ²	o ²	031021
(注釈: 引張りが正符号の流儀では,左側の図が正し いが,ここでは圧縮を正符号とするσを使っているので, 右側の図が正しい. 圧縮をやはり正とする土質力学で は,θを本書のように∠BAOとは定義せず,∠ABOと定義 することにより,左側の図を正当化している.)	$\begin{array}{c c} \hline \sigma_1 - \sigma_2 \\ \hline 0 \\ \hline \sigma_2 \\ \hline \sigma_1 - \sigma_2 \\ \hline 0 \\ \hline \sigma_2 \\ \hline \sigma_1 + \sigma_2 \\ \hline \sigma_1 + \sigma_2 \\ \hline \sigma_1 + \sigma_2 \\ \hline \sigma_1 \\ \hline \sigma$	$ \begin{array}{c} \overline{\sigma_1 - \sigma_2} \\ \sigma_1$	
p. 89, 図4.12(b)の右下部分	$\frac{d}{\sigma_2}$ $\frac{e}{\sigma_1}$	$\frac{d}{\sigma_2}$ $\frac{e}{\sigma_1}$ $\frac{d}{\sigma_1}$	010815
p. 89, 式(4.55)の右辺第2項	$+n_2^2$ [···]	$-n_2^2$ [···]	031013
p. 96, 図4. 18a	$ \begin{array}{c} \sigma_{s} & p_{m} \\ \hline \rho & \sigma_{s} & 2\theta \\ \hline \rho & \sigma_{s} & 2\theta_{s} \\ 2\theta_{2} & \sigma_{s} & 2\phi_{2} \\ 2\theta_{2} & \sigma_{1} & \sigma_{N} \end{array} $	$ \begin{array}{c} \sigma_{S} & p_{m} \\ 2\theta_{2} & 2\theta_{3} \\ 2\theta_{2} & 2\theta_{3} \\ 2\theta_{2} & 2\theta_{3} \\ 2\theta_{2} & 2\theta_{3} \\ 2\theta_{2} & 2\phi_{2} & 2\phi_{1} \\ 2\phi_{2} & 2\phi_{2} & \phi_{1} \\ \phi & \sigma_{3} & \phi_{1} \\ \phi & \sigma_{2} & \phi_{2} \\ \phi & \sigma_{3} & \phi_{1} \\ \phi & \sigma_{2} & \phi_{2} \\ \phi & \sigma_{3} & \phi_{1} \\ \phi & \sigma_{2} & \phi_{2} \\ \phi & \sigma_{3} & \phi_{1} \\ \phi & \phi_{1} \\ \phi & \phi_{2} & \phi_{1} \\ \phi & \phi_{2} \\ \phi & \phi_{1} \\ \phi & \phi_{1} \\ \phi & \phi_{1} \\ \phi & \phi_{2} \\ \phi & \phi_{1} \\ \phi & \phi_{1} \\ \phi & \phi_{2} \\ \phi & \phi_{1} \\ \phi & \phi_{1} \\ \phi & \phi_{2} \\ \phi & \phi_{1} \\ \phi & \phi_{1} \\ \phi & \phi_{2} \\ \phi & \phi_{1} \\ \phi & \phi_$	130607

p. 96, 🖾 4. 18b	σ_3 -axis $\sigma_3 < p_m < \sigma_3$ θ_1 θ_2 θ_2 ϕ_3 ϕ_1 σ_1 -axis ϕ_1 σ_2 - axis σ_1 -axis ϕ_1	θ_1 θ_2 $\sigma_3 < p_m < \sigma_2$ $p_m = \sigma_2$ σ_2 -axis $\sigma_2 < p_m < \sigma_1$	130607
p.108, 第2段落第1行	clack	crack	041012
p.109, 式(6.1)の次の行	$(0,\pm\sigma_{\mathrm{T}})$	$(\sigma_{\mathrm{T}},0) \succeq (0,\pm 2\sigma_{\mathrm{T}})$	041012
p.109, 式(6.1)の2行下	図6.1	図6.2	041012
p.110, 式(6.5)の次の行	shear angle	angle of shear	041012
p.111, 図6.5のキャプション	(a) クーロン-ナビエの最大剪断応力説. (b) モールの応力円と強度崩落線の関係. 水平の破線は,破壊がおこらない場合の 最大剪断応力を示す.破壊がする場合に は,強度包絡線との,の3をむすぶモール円 との接点が,この岩体において実現され うる最大剪断応力となる.粗く点を打っ た領域の剪断応力を,岩石は破壊のため に保持できない.(b)剪断面角θと主応力 軸および変位のセンスの関係.の2軸は紙 面と直交している.つまり破壊面は の2軸 をふくむ.	(a) クーロン-ナビエの最大剪断応力説を説 明するモールダイアグラム.(b) 剪断面角θ と主応力軸および変位のセンスの関係. σ2軸 は紙面と直交している.つまり破壊面は σ2 軸をふくむ.	041012
p.111, 式(6.6)	180°	90°	110615

4

p.111, 式(6.6)の次の行	$\tan\left(180^\circ - 2\theta\right) = -\cot 2\theta$	$\tan (90^\circ - 2\theta) = 1 / \tan 2\theta$	110615
p.111, 式(6.7)	$-1/\mu$	1/μ	110615
p.119, 式(6.22)の4行上	$\tan \alpha = \mp 1/\mu_{\rm f}$	$\tan \alpha = \pm \mu_{\rm f}$	041012
p. 118, 下から5行目	O-xz 平面における平面応力と仮定	x方向に圧縮または引っ張られると仮定	030911
p. 119, 第1行目終わりの方	この面における	ここの σ_x , σ_z と式(4.47), (4.48)の σ_l ,	030911
		σ_2 との対応に注意すると、この面における	
p. 119, 式(6.18)	$-\frac{1}{2}(\sigma_x-\sigma_z)\sin 2\theta$	$\pm \frac{1}{2}(\sigma_x - \sigma_z)\sin 2\theta$	030911
p. 119, 式(6.20)	$-\frac{\Delta\sigma_x}{2}\sin 2\theta$	$\pm \frac{\Delta \sigma_x}{2} \sin 2\theta$	030911
P. 119, 式(6.20)の2行下の式の右辺	$\mu_{\rm f} \left[\rho_{\rm gz} + \frac{\Delta \sigma_x}{2} (1 + \cos 2\theta) \right]$	$\mu_{\rm f} \left[\rho_{\rm gz} + \frac{\Delta \sigma_{\rm x}}{2} (1 + \cos 2\theta) - p_{\rm f} \right]$	030912
p. 119, 式(6.22)の導出の部分. すなわち「 Δσ _x が小さ くてもうごけると解釈しよう」から式(6.22)の直前の部 分. (誤りではないが, 分かり易い説明に変更)	そこで造構応力を最小にするこれを式 (6.21)に代入すると,	そこで式(6.21)の分母の絶対値について最大 値を求める.公式 sin(β+α)=sinβcosα+cosβsinα に注意して分母を変形すると, $\pm sin 2\theta - \mu_t (1 + cos 2\theta)$ $= \pm \sqrt{1 + \mu_t^2} sin(2\theta + \alpha) - \mu_t$ ただし, tan ⁻¹ $\alpha = \mp \mu_t$.右辺は周期 π の正弦波 である. $\alpha = 0$ の場合(これは $\mu_t = 0$ の場合に相 当), $\theta = \pi/4$ で極値をとる.摩擦係数の範囲は $0 \le \mu_f \le 1$ だから,位相のずれは $ \alpha \le \pi/4$ の範囲 にあり,確かに $0 \le \theta \le \pi/2$ の範囲で分母は求め る極値 $\pm \sqrt{1 + \mu_t^2} - \mu_t$ をとる.これを式(6.21) に代入すると,	030912
p. 120, 図6.12(a)の中	圧縮テクトニクスの地域	伸長テクトニクスの地域	010109
$n = 122 = \pm (7 - 0)$	「甲ェアノクトークへの地域 F	IT m / ク トーク への地域 V	
$\frac{ p. 120, F((1.9) }{100 - F(7.10)}$		I V	
p. 123, $\pi (1.12)$	L	I	

p. 129, 図7.4(b)	(b) N $\sigma_{Hmxx}^{\sigma(fold)}$	(b) ^o Hmax ^(fold)	
	G _{Hrrax} (llrus	σ _{Hmax} (thrus	
	(lower hemisphere)	Schmidt net (lower hemisphere)	
p. 130, 式(7.31)の最後	$\varepsilon_{zz} = \frac{1}{Y} (-\sigma_{xx} - \sigma_{yy}) - \alpha_l \Delta T$	$\varepsilon_{zz} = \frac{v}{Y} (-\sigma_{xx} - \sigma_{yy}) - \alpha_l \Delta T$	001121
p. 132, 式(7.36)のすぐ上	重力項 <i>pg</i> をはぶいてよい. 熱応力の式 (7. 31)	重力項 pg をはぶいてよい. 熱応力の式 (7.30)	001121
p.139, 本文最終行	およびyとy+dy でかこまれる 微小 直方体	でかこまれる直方体	101025
p.139,図8.3キャプションの第3行	法線応 力	力	
p.140, 式(8.2)の4行上	$\sigma_{xx} < F(z < w), \sigma_{xx} = F(z = w), \sigma_{xx} > F(z > w)$	$\sigma_{xx} _{z < w} < F/t_e$	101025
		$\sigma_{xx} _{z=w} = F/t_e$	
		$\sigma_{xx} _{z>w} > F/t_e$	
p. 140, 式(8.2)の次の行	上で短縮下側では	下側で短縮上側では	101025
p.141, 第1行	二軸性応力	平面応力	101025
p.141, 第3行	代入し、式を	代入すると	101025
p.141, 第5行	板は薄く,たわみは小さい無視できる.	ここではy方向の運動を無視するので, ε _{νy} =0.	101025
p. 141, 第6行	ε zz=0 を代入すると	ε _{yy} =0 を代入すると	101025

p. 141, 式(8.4)	E	Y E	030911
	$\sigma_{xx} = \frac{1}{1-v^2}$	$\sigma_{xx} = \frac{1-v^2}{1-v^2}$	
p.141, 式(8.6)の下4行	扇形と書ける. ゆえに,	前ページの脚注2のとおり,	101025
p.141, 式(8.9)の大括弧[]の中身	$d^2 W$	$d^2 w$	101025
	$\frac{d}{dr^2}(w-z)z$	$\frac{du^2}{dr^2}(w-z)^2$	
p. 142, 式(8.12)の2行下			030930
p. 143, 式(8.20)右辺	$q_{\rm a} + (\rho_{\rm m} - \rho_{\rm w}) gw$	ρgh	020716
p. 144, 式(8.21)右辺	$q_{\rm a} + (\rho_{\rm m} - \rho_{\rm s}) g_W$	$q_{\rm a} - (\rho_{\rm m} - \rho_{\rm s})$ gw	020716
p.148, 第3段落	軟化する硬化	軟化する効果	041025
p. 149, 下から9行目の最後	曲率 半径 に比例	曲率に比例	001110
p. 151, 第2段落5行目	$4.0 \times 10^{15}, 1.5 \times 10^{-5}$	$4.0 \times 10^{14}, 1.5 \times 10^{-4}$	130607
p. 151, 第2段落6行目	2.4%	5%	130607
p. 151, 第2段落7行目	0.024, 260, 3.8	0.05, 82, 12	021126
p. 151, 第2段落9行目	1.3×10 ⁸ , 4桁小さく	1.3×10 ⁹ , 2桁小さく	130607
p. 151, 第3段落1行目	3.8	12	130607
p. 158, 図8.18キャプションの2行	は線は	破 線は	130607
p. 159, 図8.19中の文字	ber, bei, ker, kei	Ber, Bei, Ker, Kei	130607
p. 163, 第4行目 (式(9.8)の1行上)	最左辺	最右辺	001225
p. 165, 式(9.16)左辺第3項	$\partial^4 \hat{\psi}$	$\partial^4\hat{\psi}$	011218
	$\frac{1}{\partial z}$	$\overline{\partial z^4}$	
p. 165, 式(9.19)の最後	sin kz	sinh kz	011218
p. 165, 下から6行目の式の最右辺	$3Az^2 + 2Bz + C$	$-3Az^2-2Bz-C$	000517
p. 165, 下から3行目	3AをあらためてA'とおくと,	-3A をあらためて A' とおくと,	000517
	$v_x = A'z^2 + C .$	$v_x = A'z^2 - C .$	
p. 166, 図9.3のキャプション第4行	散財	散在	010519
p. 167,本文第2行及び第3行	ρD	hog D	031111
p.167, 3行目	$\tau = 2\eta / \rho D$	$\tau = 2\eta / \rho g D$	041026
p. 178, 式(9.82)の下の行	とり、重力加速度	とする. また, 重力加速度	
p. 181, 下から7~8行目	下からの正負	下面に作用する正負	

p.173, 式(9.48)およびその1行上	∇^2	∇^4	041029
p.175, 式(9.60)	$\varphi_{zzzz}^{(i)} + 2\varphi_{zz}^{(i)} + \varphi^{(i)} = 0$	$\varphi_{zzzz}^{(i)} - 2k^2 \varphi_{zz}^{(i)} + k^4 \varphi^{(i)} = 0$	041029
		これは式(9.16)と同じ形なので、式(9.17)の	
		形の一般解を持つ.	
p.175, 式(9.61)	$\varphi^{(i)} = a^{(i)}e^{-kz} + b^{(i)}ze^{-kz}c^{(i)}e^{kz} + d^{(i)}ze^{kz}$	$\varphi^{(i)} = a^{(i)}e^{-kz} + b^{(i)}ze^{-kz} + c^{(i)}e^{kz} + d^{(i)}ze^{kz}$	041029
p. 177, 最終行	$S_{zz}\Big _{地表} = \Delta \rho g h$ を隆起量 h について解けば	$S_{zz}\Big _{ubrack track ubrack track tr$	011218
	よい. Δ <i>ρ</i> は地形荷重をあらわす.	い.この式の左辺は地形荷重である.	
p.183, 本文第2段落第6行	地殻硬化	地殼厚化	041027
p. 184, 本文5行目	火成活動も変形を	火成活動も変形も	0011221
	$ \begin{array}{c} \sigma_{\rm S} \\ \tau_0 \cos \phi \\ \tau_0 & \sigma_3 \\ \hline \sigma_3 & \sigma_1 - \sigma_3 \\ \hline \sigma_3 & \sigma_1 - \sigma_3 \\ \hline \sigma_1 & \sigma_1 \\ \hline \sigma_1 $	$ \begin{array}{c} \sigma_{S} & \tau_{0}\cos\phi_{N} \\ \hline \tau_{0} & \sigma_{3} & \sigma_{1}+\sigma_{3} \\ \hline \sigma_{1} & \sigma_{1} & \sigma_{1} \\ \hline \sigma_{1} $	
p. 194, 図10.6中の文字	Coulomb-Mohr	Coulomb-Navier	
p. 201, 図10.10中の文字	Schr dinger	Schr ö dinger	
p. 202, 下から2行目	図法の応用として	場 法の応用として	
p.206, 10.7節第1行	20~20km	約20km	041102
p.207, 最初の数式	$=\frac{1}{2}A$	$=\frac{1}{2}A^2$	041104
p.207,式(10.53)の1行上	$M = (4\pi/6)L^3$	$M = (4\pi/6)L^3\rho$	041104
p.208, 脚注4	式(10.62)	式(10.51)	041104
p. 209, 図10.18	$\eta = T_{\rm E} / \dot{E}_{\rm E}$	$2\eta = T_{\rm E} / \dot{E}_{\rm E}$	041104
p.209,図10.18のキャプション	傾き	傾きの半分	041104
p. 212, 本文第1行	結晶内の転 移 の運動	結晶内の転位の運動	001124

p. 217, 上から6行目	塑性変形する. そうした観点から応力状態	塑性変形する という 観点から,応力状態を	
同 县级行	& slickenslides	slickensides	
円, 取於1] p. 910 図11 9の説明文の基級行	向こう側	Shekenshes 手前側	001110
p. 213, 因11.200.6月又00取不用 P. 991 図11 4	「「「」」)」 「「」」)、「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」	于时间	0/1027
1. 221, 因11.4 n 230 式(11 21)の1行前		$c_1 = Ayn_1 c_2 = c_2 = Ayn_2 c_2 = Ayn_2 c_3$	040927
p. 236, 大文の5行日 (「11-7-2 広田」の前の行	$\sigma_1 = n_1 s_1, \ \sigma_2 = n_2 s_2, \ \sigma_3 = n_3 s_3$	$\sigma_1 - \tau_1 n_1 s_1, \sigma_2 - \tau_1 n_2 s_2, \sigma_3 - \tau_1 n_3 s_3$	020322
p. 230, 平文(50) 日 (「 $11.1.2$ 心切」(5) 时(5)]	<u> 4</u> 成 協 度	<i>₩D</i> 朔性 础 庄	020022
p. 241, 第11, 同	とみたせる深度とするのである	・ エロスク とみたせろ深度をリソスフェアの底とすろの	
		である.	
p. 244, 脚注をのぞいて下から2行目	転 移 クリープ	転 位 クリープ	001124
p.250, 式(12.22)の2行下	$\sin \theta = \frac{\partial \tilde{h}}{\partial x} \sqrt{1 + \left(\frac{\partial \tilde{h}}{\partial x}\right)^2}$	$\sin \theta = \frac{\partial \tilde{h}}{\partial x} \left[1 + \left(\frac{\partial \tilde{h}}{\partial x} \right)^2 \right]^{-1/2}$	041108
p. 252, 図12.16のキャプションのすぐ左の本文	波長あわなかったわけだが	波長 が あわなかったわけだが	
同, 問12.1	運命がリフティングと熱伝導のスピード	運命が、リフティングと熱伝導のスピードの	
	のかねあいで決まると12.2.2項でのべた	かねあいで決まると12.2.2項でのべた. その	
	が、この問題の場合	問題の場合	
p.254,本文下から2行目	$\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$	$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$	041013
p. 255, 第4行	$ \mathbf{a}, \mathbf{b}, \mathbf{c} = \mathbf{b}, \mathbf{a}, \mathbf{c} = \mathbf{c}, \mathbf{a}, \mathbf{b} $	$\ \mathbf{a}, \mathbf{b}, \mathbf{c}\ = \ \mathbf{b}, \mathbf{c}, \mathbf{a}\ = \ \mathbf{c}, \mathbf{a}, \mathbf{b}\ $	001107
第1と第5の等号の後	$= - \ \mathbf{b}, \mathbf{a}, \mathbf{c}\ = - \ \mathbf{c}, \mathbf{b}, \mathbf{a}\ = \ \mathbf{a}, \mathbf{c}, \mathbf{b}\ $	$= - \ \mathbf{b}, \mathbf{a}, \mathbf{c}\ = - \ \mathbf{c}, \mathbf{b}, \mathbf{a}\ = - \ \mathbf{a}, \mathbf{c}, \mathbf{b}\ $	
p. 258, 式(A. 21)	$(\lambda, 0, 0)$	$(\lambda, 0, 0)$	041013
		- $ -$	
	$\mathbf{Q} \cdot \mathbf{A} \cdot \mathbf{Q}^{T} = \begin{bmatrix} 0 & \lambda_{2} & 0 \end{bmatrix} (\mathbf{A} \cdot 20)$	$\mathbf{B} = \mathbf{Q} \cdot \mathbf{A} \cdot \mathbf{Q}^{T} = \begin{bmatrix} 0 & \lambda_{2} & 0 \end{bmatrix} (A.20)$	
	$\begin{pmatrix} 0 & 0 & \lambda_3 \end{pmatrix}$	$\begin{pmatrix} 0 & 0 & \lambda_3 \end{pmatrix}$	
p. 258, 式(A. 21)の次の行から式(A. 21)まで	A	В	041013
(AとBは同一の固有値を持ち, 主軸方向のみが違うこと			
に注意)			
p. 259, 第2行平方根の中身	$(a-b)^2 + 4c \ 2$	$(a-b)^2 + 4c^2$	041013
p. 259, 中央 A = うんぬんの式の1行下の右端	楕円 対	楕円体	001221
p. 259, 本文最下行	楕円対	楕円体	041013
p. 260, 式(A. 27)から3行目	1が2つ	Qが2つ	

その2行下	n個のIにより	n個のQにより	
p.261, 式(A.29)	$\mathbf{T}' = \mathbf{R}^{\mathrm{T}} \cdot \mathbf{T} \cdot \mathbf{R}$	$\mathbf{T}' = \mathbf{R} \cdot \mathbf{T} \cdot \mathbf{R}^{\mathrm{T}}$	041013
p.261, 式(A.31)の次の行	$\mathbf{e} = \mathbf{e}\mathbf{e}$	$\mathbf{e} = \mathbf{e}\mathbf{e}^{\mathrm{T}}$	150626
p.262, 9行目の式	$\left[\sum_{i} X_{i1} \cdot \mathbf{e}^{(i)}\right], \mathbf{e}^{(2)}, \mathbf{e}^{(3)}$	$\left\ \left(\sum_{i} X_{i1} \mathbf{e}^{(i)}\right), \mathbf{e}^{(2)}, \mathbf{e}^{(3)}\right\ $	041013
	$(X_{11} \cdot \mathbf{e}^{(1)} + X_{21} \cdot \mathbf{e}^{(2)} + X_{31} \cdot \mathbf{e}^{(3)}), \mathbf{e}^{(2)}, \mathbf{e}^{(3)})$ X_{11}	$= \left\ \left(X_{11} \mathbf{e}^{(1)} + X_{21} \mathbf{e}^{(2)} + X_{31} \mathbf{e}^{(3)} \right), \mathbf{e}^{(2)}, \mathbf{e}^{(3)} \right\ $ = X_{11}	
p. 262, 第12行	$\therefore X_{11} = \mathbf{X} \cdot \mathbf{e}^{(1)},$	$\therefore X_{11} = \left\ \left(\mathbf{X} \cdot \mathbf{e}^{(1)} \right), \mathbf{e}^{(2)}, \mathbf{e}^{(3)} \right\ ,$	041013
	$X_{22} = \mathbf{X} \cdot \mathbf{e}^{(2)},$ $\mathbf{X}_{22} = \mathbf{X} \cdot \mathbf{e}^{(3)},$	$X_{22} = \left\ \mathbf{e}^{(1)}, \left(\mathbf{X} \cdot \mathbf{e}^{(2)} \right), \mathbf{e}^{(3)} \right\ ,$	
	$A_{33} - A^{3}C^{3}$	$X_{33} = \left\ \mathbf{e}^{(1)}, \mathbf{e}^{(2)}, \left(\mathbf{X} \cdot \mathbf{e}^{(3)} \right) \right\ .$	
p. 263, 式(A.42)の4行下の式	$\mathbf{A}^4 = \cdots$	$\mathbf{A}^4 = \cdots$	031009
	$= (A_{\rm I} - A_{\rm II}) \mathbf{A}^2 - (A_{\rm II} - A_{\rm III}) \mathbf{A} + A_{\rm III} 1$	$= (A_{\rm I}^2 - A_{\rm II})\mathbf{A}^2 + (A_{\rm III} - A_{\rm I}A_{\rm II})\mathbf{A} + A_{\rm I}A_{\rm III}1$	
p. 263, 式(A.43)の1行上	これをテイラー展開しても,	これをテイラー展開しても Cayley-Hamiltonの定理により	030911
その式の1行下	2次の項までしか必要ない.	2次の項までで表現できる.	030911
p. 264, 式(A.48)から4行目	4象限すべてに分布する	縦軸および横軸の両側に分布する	011217
p. 265,式	したがって式(A. 49)は	したがって式(A.49)は	011217
$(b_1 \ 0 \ 0) \ (\sqrt{b_1} \ 0 \ 0)$	v · (C · v) = $b_1v_1^2 + b_2v_2^2 + b_3v_3^2 > 0$. ₹	v ·(C · v) = $b_1v_1^2 + b_2v_2^2 + b_3v_3^2 > 0$. この不等	
$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & b & 0 \end{bmatrix} \geq \mathbf{U} = \begin{bmatrix} \mathbf{V} & \mathbf{U} \\ 0 & \sqrt{b} & 0 \end{bmatrix}$	こで新に b の終点もまたこの領域	号がゼロベクトルでない任意のvに対して成	
$\begin{bmatrix} \mathbf{c} & \mathbf{b} & \mathbf{c} \\ \mathbf{c} & \mathbf{c} \end{bmatrix} = \begin{bmatrix} \mathbf{c} & \mathbf{c} & \mathbf{c} \\ \mathbf{c} & \mathbf{c} \end{bmatrix} = \begin{bmatrix} \mathbf{c} & \mathbf{c} \\ \mathbf{c} & \mathbf{c} \end{bmatrix}$	になければならない.	立するためには、 b_1 , b_2 , b_3 がすべて正符号	
$\left(\begin{array}{cccc} 0 & 0 & b_3 \end{array}\right) \qquad \left(\begin{array}{cccc} 0 & 0 & \sqrt{b_3} \end{array}\right)$		でなければならない.	
のあいだの6行			
p. 265,まんなかへんの数式の行	$\mathbf{R} \cdot \mathbf{R}^{\mathrm{T}} = \left(\mathbf{U}^{\cdot 1}\right)^{\mathrm{T}} \cdot \mathbf{F}^{\mathrm{T}} \cdot \mathbf{F} \cdot \mathbf{U}^{\cdot 1} =$	$\mathbf{R}^{\mathrm{T}} \cdot \mathbf{R} = \left(\mathbf{F} \cdot \mathbf{U}^{\cdot 1} \right)^{\mathrm{T}} \cdot \mathbf{F} \cdot \mathbf{U}^{\cdot 1}$	020423
		$= \left(\mathbf{U}^{-1} \right)^{\mathrm{T}} \cdot \mathbf{F}^{\mathrm{T}} \cdot \mathbf{F} \cdot \mathbf{U}^{-1} =$	

p.266, 式(A.52)	$= \left(\frac{\partial F_1}{\partial x_1}, \frac{\partial F_2}{\partial x_2}, \frac{\partial F_3}{\partial x_3}\right)^{\mathrm{T}}$	$= \left(\frac{\partial F}{\partial x_1}, \frac{\partial F}{\partial x_2}, \frac{\partial F}{\partial x_3}\right)^{\mathrm{T}}$	041013
p.266, 式(A.56) (重複削除)	$=\sum_{i,j} \left(\frac{\partial a_j}{\partial x_i}\right) e^{(i)} e^{(j)} = \sum_{i,j} \left(\frac{\partial a_j}{\partial x_i}\right) e^{(i)} e^{(j)}$	$=\sum_{i,j} \left(\frac{\partial a_j}{\partial x_i}\right) e^{(i)} e^{(j)}$	041013
p. 267, 式(A.64)の次の行	2つの角θとφは回転軸の方向を規定し、	2つの角θとφは図A.5の場合,回転軸の方向 をあらわす.それらを固定すると,	040605
p. 267, 最終行から次ページ第1段落最後まで	 回転行列Qがあたえられたなら,回転 軸と回転角をいかにして計算できる 計だろうか固有ベクトルが回転 軸の方向をあらわすのである. で し 方 ス 算 	転行列 P があたえられたなら,いかにして回転角が 算できるだろうか.目的の回転角をαとする.回転 と第3座標軸を平行に選ぶなら, P が P ['] に変換され とすると, $\mathbf{P}' = \begin{pmatrix} \cos \alpha & \sin \alpha & 0 \\ -\sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$ あって, tr P ['] = 1 + 2cos α. (A.65) かるに行列のトレースは不変量なので,座標軸の 向によらない.したがって与えられた P のトレー を式(A.65)の左辺に代入することにより, αが計 できる.	041013
p. 269, 問A.1の第6行	$\mathbf{w} = (w_1, w_2, w_3)^{\mathrm{T}}$	$\mathbf{v} = (v_1, v_2, v_3)^{\mathrm{T}}$	030320
P. 274, 第1行	歪みは0-12平面上の	歪みは0-13平面上の	031021
p. 274, 第4行	直交して下向きなである.	直交して下向きである.	
同, [問12.1]の第1,2行	その強度であたえられた力Foでどれだけ	その強度 と ,あたえられた力F ₀ で,どれだけ	
p. 278, 文献[86]	地質構造の解析:理論と実際	地質構造の解析(サブタイトル削除)	001121
p. 279, 文献[91]	1863	1963	040426
p. 279, 文献[108]	Lockner, 1995	Lockner, D.A., 1995	050714
p. 281, 文献[208]	田中隆·小草欽治, 1981. 地質雑, vo. 87	, 古川隆治・富沢昭文, 1985. 石油技協誌, 50,	050706
	p. 725–736.	43-52.	

この表の最後の列は、この表に当該項目を追加した日を示す.この欄記入のない項目は、2000年11月7日(001107)以前に記入した項目.

正誤表の最新版は, http://www.kueps.kyoto-u.ac.jp/~yamaji/RT/RT.html にあります.