Inconsistency between SEM image and Crystal orientation data obtained by SEM-EBSD systems

*Akira Miyake¹, Aki Takigawa¹,3, Yohei Igami¹, Shugo Ohi², Ryuta Nakamura¹, Akira Tsuchiyama¹

¹.Department of Geology and Mineralogy, Graduate School of Science, Kyoto University,
₂.Faculty of education, Shiga university, 3.The Hakubi Center for Advanced Research, Kyoto University

Digest version
2016/5/25
Last update 2016/6/18
Inconsistency between orientations of the EBSP and SEM image

We confirmed the **systematic inconsistency between SEM images and crystal orientations** obtained by HKL channel 5 (Flamenco, Oxford Instruments) in our SEM-EBSD systems. We show procedures to confirm the orientation relation between the EBSP and SEM images in SEM-EBSD systems. For many cases, the orientations shown by HKL channel 5 were just consistent with the SEM images rotated by 180 degree around the sample normal direction.

This inconsistency results in the **incorrect crystal orientations** and is especially critical for the determination of the three dimensional crystal orientations and of crystal faces of the sample crystals.

Our systems used in the test experiments:

<table>
<thead>
<tr>
<th>SEM</th>
<th>EBSD</th>
<th>consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. JEOL, JSM-7001F</td>
<td>Oxford Instruments, Flamenco</td>
<td>inconsistent (180° rotation required)</td>
</tr>
<tr>
<td>2. FEI, Quanta 200i 3DS</td>
<td>Oxford Instruments, Flamenco</td>
<td>inconsistent (180° rotation required)</td>
</tr>
<tr>
<td>3. FEI, Helios G3</td>
<td>Oxford Instruments, Flamenco</td>
<td>inconsistent (180° rotation required)</td>
</tr>
<tr>
<td>4. HITACHI, S-3000H</td>
<td>Oxford Instruments, Flamenco</td>
<td>consistent</td>
</tr>
</tbody>
</table>
Previous reports about the inconsistency

El-Dasher et al. (2009, 2012, …) reported the possible inconsistencies between SEM images and crystal orientations obtained by SEM-EBSD systems.

Suzuki (2013) reported that the angle between SEM image and the orientation obtained by EBSD was 180 degree.

Kilian et al. (2016) said “Recent benchmarks and comparison of reference data revealed that for various EBSD setups around the world, the orientation data defaults to the wrong absolute orientation. The absolute orientation is not correctly derived - it commonly suffer a 180 degree rotation around the normal of the sample surface” at EGU2016-8221.

Systems are tested by Kilian et al. (2016)

- **SEM**
 1. Tescan (Vega)
 2. Zeiss (Cross Beam 1540Esb)
 3. FEI (Helios 600i)
 4. Zeiss (Merlin)

- Oxford Instrument Acquisition software
 - Flamenco
 - Fast Acquisition software
 - AZtec
Procedure to confirm the inconsistency

1. Sample preparation
 a. Prepare the sample with the known crystal orientation
 (Trigonal or hexagonal crystals are recommended (e.g., quartz and corundum))
 b. Glued the sample with c-axis towards north-east onto the slide glass.
 c. Grinding, chemical polishing and coating
2. Put the sample to SEM with c-axis towards north-east (NE) on SEM image.
3. Get the EBSP and index the crystal orientation.
4. Plot the crystallographic direction from the obtained Euler angle on Wulff net (upper hemisphere plot)

Is the c-axis obtained by EBSD plotted toward NE?
Test sample: Corundum

Thanks to Masaki TAKAYA
Parameters used in Flamenco

We inputted the setting parameters that Oxford instruments recommend to use

Sample tilt (degree) : +70 in all SEM

Detector orientation (degree):
- JSM-7001F: 0, 90, 0
- Quanta 200i 3D: 0, 102, 0
- Helios G3: 0, 102, 0
- S-3000H: 0, 90, 0

Quanta 200i 3D/Helios G3
EBSP and the crystal orientation indexed with the setting parameters proposed by Oxford instruments

<table>
<thead>
<tr>
<th>Setting parameter</th>
<th>EBSP</th>
<th>Indexed orientation</th>
</tr>
</thead>
</table>

Sample tilt: 70
Detector orientation: 0, 102, 0
The orientation obtained by EBSD was inconsistent with the SEM image. Rotation of either SEM image or EBSP by 180 degree around the sample normal direction is required to achieve consistency.
Results

<table>
<thead>
<tr>
<th>SEM</th>
<th>EBSD</th>
<th>Detector orientation (degree)</th>
<th>c-axis (SEM image=NE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. JEOL, JSM-7001F</td>
<td>Flamenco</td>
<td>0, 90, 0</td>
<td>SW</td>
</tr>
<tr>
<td>2. FEI, Quanta 200i 3DS</td>
<td>Flamenco</td>
<td>0, 102, 0</td>
<td>SW</td>
</tr>
<tr>
<td>3. FEI, Helios G3</td>
<td>Flamenco</td>
<td>0, 102, 0</td>
<td>SW</td>
</tr>
<tr>
<td>4. HITACHI, S-3000H</td>
<td>Flamenco</td>
<td>0, 90, 0</td>
<td>NE</td>
</tr>
</tbody>
</table>

Sample tilt (degree) : 70 in all SEM

The orientations obtained by EBSD in JSM-7001F, Quanta 200i 3DS and Helios G3 were inconsistent with SEM images and consistent with the SEM image rotated by 180 degree around the sample normal direction.

※We do not know the other system and software, although, maybe, we think Aztec is same as Flamenco.
Official statements by Oxford instruments

It is important to realize that the EBSD orientation calibrations in Flamenco and AZtec does not relate to the orientation of the scanned image

IF you want to change the orientation of the used reference frame then it can be done either by:

- Rotating data after acquisition by a system specific angle (recommended option)
 - Either 0 or 90 or 180 or 270 deg around surface normal
- Using a system specific scan rotation angle on SEM to bring SEM image orientation to coincide with reference coordinate system for EBSD data (CS1)
- Change the tilt and detector orientation values to rotate the CS1 coordinate system to coincide with the orientation of the SEM image (this is easier to do in Flamenco than in AZtec) and is not a good idea as it causes other problems (EDS, LAM, ...)

Official statements by Oxford instruments